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Abstract. During the operation of several equipments, there are lots of failure cases in 

mechanical components subjected to multiaxial stress, where among them stands out the 

fatigue phenomenon. In this context, this paper presents the failure mode as a life prediction 

model for multiaxial fatigue through numerical analysis using the finite element method, 

assessing in which situations, the equivalent stress-based models for static loads can also be 

used on estimating the multiaxial fatigue life with alternating loads. It will also be assessed 

the accuracy in which the approximation polynomial order of the element used for 

discretization has on the results. 

The literature review of this work addresses the definitions of stress states, alternating loads 

history, yield function models and later the life prediction for multiaxial fatigue. Given these 

definitions, the work focuses on performing a numerical simulation for a model submitted to 
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torsion and alternating tensile stresses. To validate the stress results obtained by computer 

simulation, experimental tests have been performed on prototypes by electrical extensometer. 

Then, using the signaled von Mises model, it will be discussed the influence that the used 

elements have on the multiaxial fatigue life results obtained through commercial software of 

multiphysics analysis Ansys
®

. 

Keywords: Finite element method, Multiaxial fatigue, Experimental data 

1  INTRODUCTION 

Identifying possible failure modes of a mechanical component operation can ensure the 

safety and performance of a mechanical design. The ABNT 5462/94 standard defines 

mechanical failure as the total or partial reduction of working capacity of a part, component or 

machine to perform its function over a period, either because of a geometric change, or by 

fragmentation. A failure in one component is often undesirable for some reasons such as the 

risks to human life, environmental degradation, economic losses, damage to the image of 

companies and engineers. There are several causes for the occurrence of mechanical failures: 

corrosion, yielding of a material, fracture and fatigue (Collins, 2006). Therefore, the forecast 

is essential to not occur the process interruptions that generate high costs and customer 

dissatisfaction. 

Unlike the various modes of mechanical failure, fatigue stands out as a phenomenon 

caused by the variation of the stress amplitude over the time. Usually, the fatigue failure 

occurs with stress intensity lower than the yielding limits of a material. In addition, the 

fracture can occur with low or no visible geometric plastic deformation, This feature makes it 

difficult to identify before the failure. (Callister and Rethwisch, 2002). Some statistics have 

demonstrated that the fatigue has a high number of occurrences. In a study performed in the 

United States by the National Bureau of Standards, currently called National of Institute 

Standarts and Tecnology (NIST), at 1983, with 230 components which showed mechanical 

failure, the fatigue was the cause of 61% of the cases, and also 65% of the occurrences were 

caused by design deficiencies as shown in Fig. 1 (Manson and Halford, 2006). 

 

Figure 1. Failure modes in 230 components 

The difficulty of obtaining a prediction about the failure of a mechanical component may 

occur also by limiting the analytical models have to predict stress states in geometries and 

complex loads. In this context, the numerical methods are highlighted, once they do not offer 
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exact responses of stress and strain such as the analytical methods, but instead they offer a 

wide range of applications, regardless of the structure geometry and loading condition (Alves 

Filho, 2007). 

Fatigue analysis based on finite element method allows engineers and designers to predict 

the alternating multiaxial stress state with satisfactory speed and accuracy. The commercial 

softwares available help to identify critical points, however, they are limited to automate 

mathematical models, while knowledge of theories and performance of materials under cyclic 

stresses, necessary for predicting the durability and safety of mechanical components, are the 

responsibility of engineers and designers. 

2  THEORETICAL BACKGROUND 

2.1 Multiaxial states of stress 

In general, the materials properties used in mechanical components are extracted from 

uniaxial tensile testing. However, in operating a component that is subjected to mechanical 

loads, the multiaxial stress state is produced according Fig. 2. 

 

Figure 2. State stresses acting on an infinitesimal volume 

The formulation of yield or failure criteria is formulated from the components of the 

multiaxial stress state in a material point. The symmetric Cauchy stress tensor in Eq. (1) 

representing the multiaxial stress state at a point has three components of normal stress to the 

coordinate axes and 6 shear components, accounting 9 components in total (Dieter, 1981). 
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One of the stress tensor properties is the existence of a set of orthogonal axes where the 

stress values are extreme, called principal stresses as indicated: σ1, σ2 e σ3 (maximum, 

intermediate and minimum). These stresses are perpendicular to each other, thus forming a 

new coordinate system called principal coordinate system (Dieter, 1981). The three stress 

values are the roots of the cubic equation, according to Eq. (2) formed by eigen-values of the 

tensor Tij, them these stresses have the characteristic of σ1 > σ2 > σ 3. 
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Where p  coefficients are stress tensor invariants, which keeps its steady value, even in a 

newly formed main coordinate system. 
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Thus, the failure criteria are mathematical models for predicting the failure of a 

component subjected to a multiaxial stress state. They are applied in order to estimate a stress 

parameter which makes it possible the equivalence between multiaxial stress state and 

material strength data obtained from specimens subjected to uniaxial tension tests (Dieter, 

1981). 

2.1.1 The von Mises yield criterion 

One of the most failure criteria used for the failure prediction of static loadings and 

multiaxial is the criterion of maximum octahedral shear stress, also known as von Mises 

criterion. It is based on the maximum shear stress acting at an oblique plane formed in the 

main coordinate system. This stress operates in a plane that intersects the three axes of the 

principal stresses at the same distance from the source. The stress used as an equivalent in 

comparison with the yield stress value is called von Mises equivalent stress expressed in 

relation to the tree-dimensional tensor components of stress and presented as Eq. (6): 

      ).(6
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It may also be expressed in terms of principal stresses as Eq. (7): 
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Therefore, the failure occurs when the von Mises equivalent stress overcome the yielding 

limit obtained from a uniaxial tensile testing. 

2.2 Finite element method 

Most practical importance structures have complex geometry and loading which makes it 

difficult to calculate the stresses and displacements using the classical methods of analytical 

solid mechanics. 

The Finite Element Method (FEM) is an approximate numerical technique used to obtain 

stresses and displacements into a structure. 

The main action to be taken in the structural finite element analysis is to determine the 

relationship between the forces {F} and the displacements fields {u} of the entire structure as 

Eq. (8). 

     uKF   (8) 

The relation called by the stiffness [K] is formed by the sum of the stiffness of each 

element used in the structure discretization. 

For the three-dimensional elements the stiffness matrix is determined from the Eq. (9) for 

each element. Where the matrix [B] is obtained from the shape functions partial derivatives in 

relation to the coordinate axes. 

(3) 

(4) 

(5) 
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Efficiency in the numerical treatment of the functions in FEM is influenced by the 

difficulty level of solving equations, due to the amount of discretizations created in the 

structure. Once this efficiency it is not always achieved just using the elements representation 

in the Cartesian system, the FEM uses the isoparametric formulation of the elements (Fig. 3). 

In this formulation, the displacement and geometry of each point element at the global 

cartesian system have an equivalence in the natural coordinate system (ξ, η, ζ). The 

displacement field within the element is given by functions called interpolation functions as in 

Eq. (10). 

 

Figure 3. Isoparametric mapping 





q

i

ii

q

i

ii

q

i

ii wNwvNvuNu
111

),,(),,(),,(),(),,(),,(   (10) 

The interpolation function determine the displacements inside the element, therefore, 

there is a numerical need to transform the derivatives from natural system (ξ, η, ζ) to the 

global system (x, y, z). According to Eq. (11) this coordinate transformation is accomplished 

by Jacobian operator [J]. 
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The determinant of the Jacobian operator is also the scale factor which relates the element 

volume calculated on the local system and the element volume of the global coordinate 

system. The stiffness matrix of the three-dimensional elements takes into account the volume 

calculation and the coordinate transformation from the natural element system to the global 

system, and can be written as shown in Eq. (12): 
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In general, commercial softwares use Gauss numerical integration for the solution of Eq. 

(12). This numerical integration technique utilizes the sum of a set of function values in a 

range of preselected points called Gauss points as in Fig. 4 and multiplied by a weight. The 

Gauss points are the sampling points used in the elements for calculating the numeric 

integration. These points are determined according to the geometry of the element. 
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Figure 4. Gaussian points in a quadrilateral element 

The stress components are extrapolated to the nearest node from the Gauss point of 

integration. The same node is simultaneously connected in more than one element, for this 

reason, the same node records stresses of several other points. The element mesh for a 

displacement field is continuous along the solid, however, the stress field is discontinuous as 

shown in Fig. 5a (Cook et al., 2002). To correct the discontinuity of the stress field 

surrounding the nodes, it is used the Eq. (13) to place the smoothed average of nodal values, 

where the average of the stress in Fig. 5b is obtained from each point of Gauss in order to 

minimize the global error. 
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Figure 5. Discontinuity of the stresses of the element around the node: (a) unaverage (b) average 

2.3 Fatigue 

Most failures in mechanical components subjected to variable loads over time are due to 

fatigue. Fatigue is defined as a phenomenon that generates progressive and permanent located 

structural changes that occurs in materials subjected to cycles of stresses and deformations 

which may result in cracks or fracture after a sufficient number of cycles. 

Generally three factors must occur simultaneously for the fatigue phenomenon occurs: 

cyclic loads, normal tensile and local plastic deformation. In some cases uniaxial prediction 

fatigue life criteria do not provide satisfactory results regarding the number of cycles that a 

component can resist. Thus, development is necessary to adjust the yielding criteria in order 

to obtain a number of cycles related to failure when it is submitted to a multiaxial stress state. 

2.3.1 Cyclic history of loading 

The use of a fatigue prediction model is influenced by the history of loading which the 

component is subjected. The cyclic history of loading identifies the stress amplitudes over 

time, which may be constant or variable. According to Fig. 6 is possible to see the diagrams 

indicating the variation of stress amplitude over time. 
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Figure 6. Sinusoidal cyclic loading:  (a) R= -1    (b)R= 0    (c) -1 < R < 0. 

Analyzing the load history is possible to extract three basic parameters for the use of 

predictive fatigue models: alternating stress amplitude σa, mean stress σm and stress amplitude 

ratio R. 
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The stress amplitude ratio may indicate whether or not the fatigue occurrence from the 

analysis of the loading history, for example: R=1 indicates static loading without the 

possibility of fatigue cracks nucleation. In its turn, the load history with 1 <R <∞ do not 

contribute to the phenomenon. The mechanical fatigue testing is applied to determine the 

behavior of materials under cyclic uniaxial loads and some engineering applications are made 

with sinusoidal history loadings as shown in Fig. 6a. A characteristic observed in a fully 

reversed constant loads (R=-1) is that the principal stress direction does not change over the 

loading history. This feature is plotted in Mohr’s circle, showed in Fig.7 for plane stress. 

 

Figure 7. Direction of principal stress during cyclic loading for R= -1 

Multiaxial fatigue is classified in two groups of load history: proportional loading and 

nonproportional loading, according to Fig. 8. 
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Figure 8. Fatigue loadings 

When a multiaxial loading is classified as proportional, it refers to a history loading 

where the variation of the maximum and minimum amplitudes of stress remains fixed relating 

to the direction of the principal stresses axes (Meggiolaro and Castro, 2005). Proportional 

loading is divided into two types classified as in phase and out of phase (Marquis and Socie, 

2000). Multiaxial loadings which reach the peaks of the maximum and minimum amplitude 

stress in the same instant throughout its history, according to Fig. 9, are classified as in phase 

(Marquis and Socie, 2000). Generally, loads in phase are always proportional. 

 

Figure 9. Proportional history loading in phase 

On the other hand, historical loading where there is no such coincidence between the 

stress amplitude peaks are classified as out of phase, once there is a delay between periodic 

waves, and the lag angle variation can reduce the material fatigue life (Marquis and Socie, 

2000). 

2.4 Stress Based Models (S-N Curve) 

The study and project methodologies for the fatigue life prediction follow three different 

approaches: stress-life cycles (S-N), strain-life cycles (ε-N) and fracture mechanics (da/dN) 

(Norton, 2013). 

The S-N approach has been determined in a systematic way by August Wöhler 

determining the amplitude of the alternating stress Sa applied on a material until a number of 

cycles to failure occurs Nf. According to Eq. (17) S'f and b are material constants obtained 

from the S-N curve showed in Fig. (10). 
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If the data of the high-cycle region of S-N curve are plotted in a log-log scale the format 

of the curve is a straight line (Dowling, 2000). Some materials present a baseline, called the 

fatigue limit Sn, so that alternating stress below this limit does not produce fatigue failure in 

the material. In general, this limit occurs for 1E6 loading cycles for ferrous materials. 

 

Figure 10. S-N diagram of material  

 The S-N curves are obtained for a material under very specific conditions, where in 

most cases they are not the same the conditions under which the component will operate, 

these differences decrease the fatigue strength of the material and should be corrected. The 

endurance fatigue limit for a Nf  number of cycles in a component is corrected by the fatigue 

strength factor Kf. This factor considers the effects produced by the differences of size Csize, 

loading Cload, surface finish Csurf, temperature Ctemp and reliability Creali (Norton, 2013). 

realitempsurftloadsizef CCCCCk   (18) 

2.5 Mean stress correction 

Several works show that the average stress influences negatively the number of cycles to 

failure, the higher its intensity the lower is the number of cycles. Thus, mathematical models 

seek to correct these effects on the S-N curve (Budynas and Nisbett, 2016). For a certain 

combination of σa and σm is determined equivalent completely reversed stress σar which can 

be interpolated by the S-N curve obtained in a test with zero mean stress. One of the most 

used models is the Goodman correction model Eq. (19): 
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Thus, the cycles to failure prediction can be obtained by interpolating the S-N curve for 

replacing the Sa in Eq. (17) by the corrected σar since the constants of material S'f and b are 

obtained in tests with zero mean stress. Dowling (2004) concludes in his paper that the 

Goodman model is excessive conservative for tensile mean stresses. Another model of mean 

stress correction is the Gerber expressed by Eq. (20): 
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2.6 Multiaxial fatigue models 

When a component is manufactured in a mechanical engineering material and it is 

subjected to an in phase and proportional loads history, it is possible to presume that the 

fatigue life is controlled by the amplitude of the octahedral shear stress and thus it uses the 

equations of von Mises model (Dowling, 1999). 

Basically these models stipulate an equivalent stress to the multiaxial state of alternating 

stresses to which the body is subjected to use it as an input into the Eq. (17) and S-N curve of 

the material. One of the models used to estimate the fatigue life with proportional and in 

phase load history is based on the von Mises equivalent stress criterion. Where, it is 

formulated by using the alternating components of the stress tensor (Lee et al., 2011). 
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Equation (21) does not count the compressive stresses in the loading history, because the 

equivalent stresses values are always positive as shown in Fig.11.  

 

Figure 11. History loading using the von Mises stress 

Therefore, the compression effects, which do not contribute to fatigue, are not taken into 

account. The signed von Mises stress can be used for considering these effects. This stress is 

obtained from a correction made in the Eq. (22) and this operation is done by inserting the 

maximum principal stress σ1 signal if it is a nonzero value or in the case where the maximum 

principal stress σ1 is zero, the operation can be done with the minimum principal stress σ3.  
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The result of this correction can be seen according Fig. 12 in a sine wave format for the 

loading history. 
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Figura 12. History loading using signed von Mises stress 

The alternating amplitude stress showed in Eq. (14) can then be calculated with the 

maximum and minimum components of the signed von Mises stress. Another way to 

incorporate the von Mises stress in the alternating stress amplitude of the load history is by 

inserting positive or negative sign on the first invariant of the stress tensor I1 calculated in Eq. 

(3) into a von Mises value obtained according Eq. (23) (Papuga et al., 2011). 
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The equivalent stress-based models are not efficient to describe the cyclic hardening of 

the material generated by a non-proportional cyclic loading. Therefore it is only 

recommended to use equivalent stress-based models to estimate the fatigue life of components 

that are subject to proportional and in phase loads (Lee et al., 2011). 

3  NUMERICAL SIMULATION 

It was considered four element types to determine the multiaxial stresses state and then it 

was applied the life prediction models. In this work, the static structural and fatigue analysis 

have been performed using the multiphysics analysis software Ansys. 

3.1 Static structural analysis 

The three-dimensional component simulated in Fig. 13 is a cantilever shaft fixed in one 

end and submitted to axial and torsional loads on the opposite side. The loads applied intend 

to produce a multiaxial state of shear and normal stresses in this study section. 

 

Figure 13. Geometry and boundary conditions of specimen 
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The shaft discretization was performed by using four element types such as tetrahedron (4 

and 10-node) and hexahedron (8 and 20-node), formulated with interpolation functions of first 

and second order respectively. The number of nodes in each of the final four mesh elements is 

reported in Table 1. 

Table 1. Number of nodes and elements in each simulation 

Type of element Nodes Elements 

TET4 4243 19954 

HEX8 8280 7079 

TET10 30183 20007 

HEX20 31856 7079 

 

By comparing the four types of mesh discretization in Fig. 14 it is possible to observe the 

influence that the higher order elements have on the component discretization. The TET12 

and HEX20 elements are more accurate to discretize regions with complex geometry, once 

they are described by higher order interpolation functions. 

 

Figure 14. Complex geometry region discretized: (a) HEX8 (b)HEX20 (c)TET4 (d)TET10 

Notched regions are stress concentrators and therefore there is a higher probability of 

having fatigue cracks nucleation. Another important factor in the finite element analysis is 

computational efforts to solve the equations. The higher the number of nodes in a mesh the 

higher the degrees of freedom, and consequently more accurate results will be obtained. 

However, the resolution time will increase. The mechanical properties in Table 2 were used in 

the simulation and have been based on the SAE 1045 steel. 

Table 2. Mechanical material properties 

Material 
Young modulus 

(GPa) 

Poisson 

ratio 

Tensile yield 

strength (MPa) 

Tensile ultimate 

strength (MPa) 

SAE 1045 210 0.3 380 620 

 

The intensity of axial and torsional loads is shown in Table 3. 
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Table 3. Simulation loads 

Load Magnitude 

Moment 830 Nmm 

Force 5500 N 

 

Figure 15 shows the results from numerical simulation for static analysis. 

 

Figure 15. Results of von Mises stress in structural analysis for (a)TET4 (b)TET10 (c)HEX8 (d)HEX20  

3.2 Experimental Data 

To check the accuracy of the stress values obtained by the four finite element mesh in 

each analysis it was manufactured a Carbon steel SAE 1045 specimen with the same 

dimensions and loads used in numerical simulation. To simulate the loading conditions, it was 

manufactured a test device assembled on a torque machine as showed in Fig. 16. The device 

operates with a screw-thread system which allows the specimen to be submitted to two 

simultaneous loads of torsion and traction. 

One of the specimen ends is kept fixed, hindering as rotating or displacement, the 

opposite end transmits the torque applied by a machine available on the Center of Mechanical 

Laboratories (CLM) in the University Center of FEI. The intensity of the applied torque can 

be measured by the load cell inside the torque machine, and visualized in data acquisition 

apparatus. 
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Figure 16. (a) Test device: (1) Specimen (2) Transmission plate (3) Tensile-torsional shaft (4) Cantilever 

plate (b) Torque machine (c) Fixing device on torque machine (d) Data acquisition of torque machine 

The validation of the results obtained by the mesh was made using a strain gauge type 

rosette which allows measuring stresses in a two-dimensional state from the conversion of the 

variation in electrical resistance. Due to the dimensional limitations of the strain gauge in 

relation to the dimensional of specimen critical section, it was made the option to set the 

extensometer at a sampling point stress (Fig. 17) in a distance of approximately 8.5mm from 

the critical section obtained in the simulation. 

 

Figure 17. Details strain gauge Rosette in the sampling point 

Considering the strain gauge components, the von Mises stress was calculated in the 

component surface obtained experimentally σVM,ex, and its intensity of stress was 79.21 MPa. 

The error between the von Mises stress obtained in the test σVM,ex and von Mises stress 

obtained in the same point from the finite element analysis σVM,FEA is presented in Table 4. 

Table 4. Stress comparison on the sampling point data obtained in the test 

Element Node σVM,FEA Error 

HEX20 7971 70,6 10,90% 

HEX8 2469 70,4 11,10% 

TET10 503 70,4 11,10% 

TET4 503 70,2 11,40% 
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The critical section indicated in the static structural analysis can be estimated by the 

stress concentration factor KT,Teo available in the literature. Peterson (1951) provides curves 

where it is possible to estimate the KT,Teo value. Considering the geometry used in this paper 

the KT,Teo factor is approximately 1.6. A characteristic of the FEM is that the simulation 

already considers the influence of stress concentration factors. Then the geometry 

concentration factor used in the discretization can be estimated from the stresses. Table 5 

shows the values obtained by KT,FEA for the different orders elements and the error compared 

to the KT,Teo estimated. 

Table 5. Kt coefficient and error in critical section obtained in the simulation  

Element Node σVM,FEA KT,FEA Error 

HEX20 7971 105 1.5 6.8% 

HEX8 2469 92.6 1.3 18.0% 

TET10 503 101 1.4 10.3% 

TET4 503 83 1.2 26.1% 

 

Analyzing the data from simulation and test it was observed that the second-order 

elements have a higher accuracy to discretize the complexity of the geometry and hence its 

obtained KT,FEA values are closer to the theoretical. 

3.3 Experimental Fatigue Data 

The cyclic material properties used in the fatigue simulations of this paper were those 

obtained from the work of Li et al., (2014) for a steel SAE1045. Values of S’f and b 

coefficients used for building the S-N curve in the software have been calculated according to 

experimental data and they are presented in Table 6. 

Table 6. Fatigue proprieties for the used material 

Material S'f b 

SAE 1045 1763 -0.1527 

3.4 Fatigue Analysis 

To highlight the fatigue models in numerical simulation the loads intensity was increased 

as indicated in Table 7. 

Table 7. Fatigue simulation loads 

Load Magnitude 

Moment 2 kNmm 

Force 12 kN 
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The multiaxial fatigue analysis was carried by using the higher stress components in 

the mesh. Table 8 shows the stress state for the four nodes of the critical section. 

Table 8. Stress components of the nodes on the critical section 

Element Node σ1 σ2 σ3 σvm 
HEX20 7971 258.7 56.0 -2.3 237,3 

HEX8 2469 222.6 33.7 -3.4 209.9 

TET10 503 255.1 54.8 4.5 229.6 

TET4 503 206.2 46.4 27.9 169.8 

 

The results of von Mises stress for the new load condition is shown in Fig. 18. 

 

Figure 18. Maximum von Mises stress for fatigue analysis (a)HEX20 (b)HEX8 (c)TET10 (d)TET4 

3.4.1 Multiaxial fatigue analysis with R = -1 

The Stress-Life approach was applied to simulate a load history with R=-1 and the signed 

von Mises equivalent stress for interpolation in the log-log S-N curve. Three parameters that 

are available in the commercial software utilized for predicting life in multiaxial fatigue have 

been used: biaxiality indication a, equivalent alternating stress σeas and number of cycles Nf. 

Multiaxial Fatigue criteria based on the signed von Mises equivalent stress, are only 

recommended for proportional loads history. Thus, the biaxiality indication a obtained by Eq. 

(24) and the angle ϕp in Fig. 19 can specify the nonproportionality generated by a loading. A 

loading is classified as proportional if a and ϕp remains constant along the time. 

1

2




a  (24) 

The range for biaxiality indicator goes from -1 up to 1. Once that zero indicates a state of 

uniaxial stresses and proportional loading, -1 indicates a state of pure shear and 1 corresponds 

to a biaxial state. 

(a) 

(b) 

(c) 

(d) 
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Figure 19. Surface stress reduced to two principal stresses and their orientation 

The indication of biaxiality of the simulation is presented in Table 9. 

Table 9. Biaxiality indicator 

Element type Node Biaxiality indicator  a 

HEX8 2469 0,1514 

HEX20 7971 0.2166 

TET4 503 0.2250 

TET10 503 0.2148 

 

The range of values is positive and greater than zero, so as provided for simulation, the 

load is multiaxial and proportional. Therefore, equivalent alternating stress σeas can be 

calculated by using the signed von Mises stress as in Eq. (25). 

Kf
VMaeas

1
.,   (25) 

In this case, the mathematical operation of dividing the alternating stress by a fatigue 

strength factor Kf increases the intensity of the equivalent alternating stress. This operation is 

equal plotting a new S-N curve for the surface node analyzed in Fig. 20. The number of 

cycles until the fatigue failure is obtained by interpolating the equivalent alternating stress σeas 

at the S-N curve according to Eq. (26).  

 bffeas NS 2.'  (26) 

 

Figure 20. Interpolation log-log scale in S-N curve 
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The alternating stress amplitude, equivalent alternating stress and life prediction in 

simulation results are shown in Table 10 and Fig. 21. 

Table 10. Alternating stress amplitude, equivalent alternating stress and life in simulation with R=-1 

Element Node σa,VM  σeas  Nf 

HEX20 7971 237.3 431.5 5042 

HEX8 2469 209.9 381.7 11320 

TET10 503 229.6 417.5 6268 

TET4 503 169.8 308.6 45490 

 

Reducing the order of the hexahedral elements from 20 to 8 nodes there was a decrease of 

about 12% in the equivalent alternating stress, but on the other hand the number of cycles was 

55% higher. 

 

Figure 21. Comparative e between equivalent alternating stress and life in simulation with R=-1 

By comparing the two second order elements HEX20 and TET10, the difference in the 

equivalent alternating stress was just 3%, but instead it generated a difference in number of 

cycles of 20%. This demonstrates how the number of cycles can be affected by small 

variations in stress caused by the reduction of the number of nodes and degrees of freedom of 

structure. 

3.4.2 Multiaxial fatigue analysis with R = 0  

In the fatigue case with R=0, it was researched how the effects of mean stress are used in 

the models available in the software. It was used the signed von Mises equivalent stress and 

the Goodman correction. The equivalent alternating stress used by software is given by Eq. 

(27). The use of this equation allows obtaining an equivalent stress value for different stress 

ratios R. 

Kf
CmVMamEAS

1
.,,    (27) 
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The results obtained by the Eq. (25) in the software simulation are equal to the equivalent 

completely reversed stress obtained through the Eq. (19) in Goodman model and Eq. (20) in 

Gerber model. 

Kf
C

Kf
mVMaarmEAS

1
.

1
,,    (28) 

The Cm is a constant for the mean stress correction of the Goodman model according to 

Eq. (29) and Gerber Model according to Eq. (30), RR is the stress ratio of the tests used to 

determine the S-N curve and σLR the ultimate tensile strength obtained from the uniaxial 

tensile test. 


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The Cm constant for the Gerber model in Eq. (30) does not use the components of the 

mean stress or alternating stress. 
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Table 11 shows the respective values of the equivalent alternating stress using the 

Goodman and Gerber correction expressed by Eq. (27) in conjunction with the signed von 

Mises stress: 

Table 11. Equivalent alternating stress and cycle number calculated by the equations 

Element Node 
σar,Good  

Eq. (19) 

σEAS,m  

Goodman 
corretion 

Nf 
Goodman 

corretion 

σar,Gerb  

Eq. (20) 

σEAS,m  

Gerber 
corretion 

Nf  
Gerber 

corretion 

HEX20 7971 146.73 266.78 118100 123.16 223.93 371600 

HEX8 2469 126.34 229.75 314110 108.05 196.48 862860 

TET10 503 140.89 256.18 154010 118.88 216.15 468310 

TET4 503 98.34 178.79 1000000 86.50 157.27 1000000 

4  CONCLUSIONS 

The analysis software for finite element proved to be an efficient tool for the 

characterization of multiaxial stress states that can cause fatigue failure and most of them 

include somehow tools for the fatigue analysis. Although the fatigue analysis is rather 

complex, there are different factors that may influence its life results accuracy, since the 

equivalent alternating stress interpolation in the S-N curve until the element order used in the 

numerical simulation. The models based on the equivalent stress to static loads have a 

restricted use when applied in fatigue analysis, and then the von Mises model should be 

applied only in situations of proportional and in-phase loading history. 

In the fatigue analysis performed by the software the equivalent alternating stress used to 

interpolate the number of cycles in the S-N curve was corrected by a factor called fatigue 

strength factor Kf. In this single coefficient, the software does all the considerations regarding 
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the differences between the fatigue resistance obtained from the specimen under ideal 

conditions and simulated component. In some cases mechanical components with high stress 

concentrator geometries and different surface finishes can be a source of error if the 

appropriate corrections are not considered.  

The equivalent stress-based models results are greatly influenced by the accuracy of the 

element mapping to be considered. The most complete second order element HEX 20 has 

proved to be the most accurate when discretize the critical section. Furthermore, it also proved 

to be the element that can estimate the most conservative and favourable safety fatigue life 

results. The first order elements can be an alternative to reduce the number of equations to be 

solved, however it can produce a large increase in the number of cycles and thus a source of 

error in predicting life. This happens because the number of cycles depends on the von Mises 

equivalent stress data for a logarithmic interpolation of the S-N curve. 
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