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ABSTRACT
Transmission lines are essential for access to clean and affordable energy sources, Sustainable 
Development Goal 7. Wildfires are an important factor in the degradation of the quality of public 
transmission service provision. This work sought to build a model to predict the outage of a transmission 
line when exposed to a wildfire. The characteristics analysed of the spans exposed to fires of twelve 
transmission lines at a voltage level of 500 kV in Brazil totalled 3,998 km. The logistic regression 
technique was used for the study. It was possible to reach a model with a hit rate higher than 73% 
for the occurrence of transmission line outages. The quantity of fire outbreaks, the climatic variables, 
and the type of biome of the spans were observed to be the best predictive variables available. The 
temperature rise can potentially increase the number of outages caused by wildfires.
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RESUMO
As linhas de transmissão são essenciais para o acesso a fontes de energias limpas e acessíveis, Objetivo 
de Desenvolvimento Sustentável 7. Os incêndios florestais são um fator importante de degradação da 
qualidade da prestação do serviço público de transmissão. Este trabalho buscou construir um modelo 
para previsão de desligamento de uma linha de transmissão quando exposta a um incêndio florestal. 
Foram analisadas as características dos vãos expostos ao fogo de 12 linhas de transmissão em nível 
de tensão de 500 kV no Brasil, totalizando 3.998 km. Utilizou-se a técnica de regressão logística para 
o estudo. Foi possível chegar a um modelo com índice de acerto superior a 73% para a ocorrência 
de desligamentos de linhas de transmissão. Observou-se que o quantitativo de focos de incêndios, as 
variáveis climáticas e o tipo de bioma dos vãos são as melhores variáveis previsoras disponíveis. O 
aumento da temperatura tem potencial para elevar o número de desligamentos por incêndios florestais.

Palavras-chave: Queimadas. Interrupção. Energia elétrica.

1 INTRODUCTION

The consequences of wildfires on the electrical grid are quite significant (Operador Nacional do Sistema 
Elétrico, 2016b), highlighting the reduction of renewable energy generation. However, not every 
wildfire causes a transmission line outage. The study of this phenomenon involves different factors: 
climatic variables, land use, operating conditions and technical building characteristics.

The adequate performance of transmission lines greatly influences achieving the Sustainable 
Development Goal 7. Transmission lines are essential for transporting renewable energy production 
to large load centres, minimising the effect of intermittency of renewable sources and, thus, lowering 
energy costs for the consumer. 

Transmission line outage can occur due to a short circuit in the presence of fire due to the reduction 
of the dielectric strength of the air between the phase conductors and between the phase conductors 
and the ground. Smoke and fly ash from a wildfire can also alter the insulating characteristics of air 
spaces, as conductive particles drastically lower the dielectric strength of the air (Khan; Ghassemi, 
2022). Another factor is the high temperature of a flame, which can decrease the tensile strength of 
transmission line conductors and accelerate their ageing (Guo et al., 2018). 

The operating state of a transmission line subjected to a wildfire varies between on and off. Thus, the 
operating state of the installation is understood to be a dichotomous variable. Logistic regression is a 
potential mathematical model for this type of output, corresponding to one variable and with multiple 
continuous predictive variables (Field, 2017). 

Logistic regression is a type of multiple regression with a dichotomous categorical output variable 
and continuous or categorical predictive variables (Field, 2017). Based on certain information, we can 
predict which of the two categories a variable belongs to. 

In a linear regression, the observed data must have a linear relationship. However, this hypothesis is 
violated if the output variable is dichotomous (Berry, 1993). One way around this problem is to change 
the data through a logarithmic transformation (Packard, 2013; Zhang; Wang; Luo, 2015). The logistic 
regression equation expresses a multiple linear regression equation in logarithmic terms and solves the 
linearity hypothesis violation problem this way.

In a logistic regression, therefore, we predict the probability of Y occurring when the values of X or Xs 
are known according to Equation (1). 

(1)
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The probabilistic equation P(Y) of the logistic regression has several similarities with the linear regression 
equation. In reality, the exponent of the natural number e contains an expression identical to that of 
the multiple regression, where b0 is the Intercept, bn corresponds to the coefficient of the predictive 
variable, xn and ɛ is the residual term. 

The resulting value of the equation is a probability and always varies between 0 and 1 (Heumann; 
Schomaker; Shalabh, 2016). A value close to 0 means that the occurrence of Y is very unlikely, and a 
value close to 1 that it is very likely.

Each predictive variable has its own coefficient in the logistic equation. These parameters are estimated 
by adjusting models based on the observed data. The model chosen will be the one where the values of 
the predictive variables result in the value of Y closest to the observed value. Specifically, the parameter 
values are calculated using maximum likelihood estimation (Brandt, 2014). One of the main advantages 
of this method is that its estimators are consistent, asymptotically normal and efficient (Guera et al., 
2018)Pinar del Río, Cuba. Para isso, foram ajustadas dez Funções de Densidade de Probabilidade (FDPs.

As with multiple correlation, it is possible to calculate a more appropriate version of the R-coefficient in 
logistic regression. This R-coefficient is the partial correlation between the output variable and each of 
the predictive variables and can range from -1 to 1, where values close to zero indicate no correlation, 
positive values represent direct correlation, and negative values represent inverse correlation. The R 
proposed by Cox and Snell (Cox; Snell, 2008), represented by the symbol R2CS, which is based on the 
log-likelihood (Brandt, 2014) of the model, the log-likelihood of the original model and the sample size, 
according to equation (2). 

(2)

However, this coefficient never reaches its maximum theoretical value of 1. As such, (Nagelkerke, 1991) 
suggested the following correction (Nagelkerke’s R2), according to equation (3).

(3)

SPSS (IBM, 2020) uses the R-coefficient proposed by Cox and Snell (Cox; Snell, 2008), considering the 
correction of Nagelkerke (Nagelkerke, 1991). The terms of the exponent of the natural number of 
equation (3) come from the log-likelihood (VL) expression described in equation (4). 

(4)

Equation (3) is associated with the probabilities derived from the model and the actual data. The result 
of the Equation indicates how much unexplained information still exists after the model has been 
adjusted. 

Calculating means does not make sense for dichotomous variables. Thus, the basic value of the 
likelihood-log (VL(Basic)) of equation (4) corresponds to the category with the highest number of cases.

In logistic regression, a value called Wald presents a special distribution known as chi-square (Hastie; 
Tibshirani; Friedman, 2009). Wald tells us if the coefficient bn of each predictor is significantly different 
from zero (Wald, 1943). If this occurs, we can assume that the predictor xn is contributing significantly 
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to the prediction of the output variable. Equation (5) shows how Wald is calculated, and it is possible 
to see that it is equal to t in the linear regression.

(5)

Where b is the regression coefficient and EPb is its standard error.

Another important variable for the interpretation of the logistic regression is the so-called exponent. 
This indicator represents the variation of the probability change before and after the inclusion of the 
analysed variable. When the indicator is greater than 1, it indicates that the increase in the predictor is 
directly related to the increase in the chance of an increase in the output variable (Field, 2017).

In our specific case, we will use logistic regression to predict whether a transmission line will suffer an 
outage caused by wildfires, given the characteristics of transmission line spans exposed to the fires. 

2 MATERIALS AND METHODS

We analysed the forced outage data of the Brazilian transmission system in 2018 and 2019 that was 
declared by the transmission utilities to the national network operator (Operador Nacional do Sistema 
Elétrico, 2016b). The obtained data contained information on the date, time, installation, outage cause 
and declared location for the defect. Based on this data, the outages caused by wildfires were selected.  

We selected six transmission line trunks with asymmetric performance in the period regarding outages 
caused by fires. The selected circuits are highlighted in Table 1.

Table 1 | Trunks and transmission lines selected for the study.

Trunks Installation Length (km)

1
TL  500 kV COLINAS / RIB.GONÇALVES  C 1  TO/PI 379

TL  500 kV COLINAS / RIB.GONÇALVES  C 2  TO/PI 367

2
TL 500 kV IMPERATRIZ / COLINAS  C 1  MA/TO 343

TL  500 kV IMPERATRIZ / COLINAS  C 2  MA/TO 343

3
TL 500 kV IMPERATRIZ / P. DUTRA  C 1  MA    388

TL  500 kV IMPERATRIZ / P. DUTRA  C 2  MA    388

4
TL  500 kV RIB.GONCALVES / S. JOÃO PIAUÍ   C L3 PI 353

TL  500 kV RIB.GONCALVES / S. JOÃO PIAUÍ   C L4 PI 353

5
TL  500 kV TERESINA II / P. DUTRA   C C9 PI/MA       210

TL  500 kV TERESINA II / P. DUTRA   C C8 PI/MA       208

6
TL  500 kV TERESINA II / SOBRAL III     C V8 PI/CE 334

TL  500 kV TERESINA II / SOBRAL III     C V9 PI/CE 332

Source: Operador Nacional do Sistema Elétrico, 2023.

The six selected trunks cover the states of Piauí, Tocantins, Maranhão and Ceará, as shown in Figure 1, 
and they correspond to twelve 500 kV transmission lines with a total of 3,998 km. 
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Figure 1 | Schematic of the analyzed transmission lines (ONS, 2017)

The information in granularity by span was gathered for the six selected trunks, highlighted in Table 2.

Spans are limited by transmission line towers and are analysed according to their area of influence. 
Each area is delimited by the width of the safety strip established in the environmental license and 
by the transmission line towers (Figure 2). Span analysis is a major innovation of this work, given that 
similar articles analysed theoretical models or transmission lines (Guo et al., 2018; Khan; Ghassemi, 
2022; Shi et al., 2018). 

Figure 2 | Schematic representation of the areas of study 
Source: Authors.
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Table 2 | Analysed variables 

Variable Measurement 
Scales

Type of 
characteristic Unit Origin

Outages Nominal Performance Not applicable SIPER

Fire outbreaks Ratio Performance Amount Queimadas 
program

NDVI Ratio Performance Dimensionless GGT

Width Ratio Constructional Meters GGT

Height Ratio Constructional Meters GGT

Insulators Ratio Constructional Amount GGT

Days without rain Ratio Climatic Not applicable Inpe

Humidity Ratio Climatic Percentage Inpe

Temperature Ratio Climatic Degrees Celsius Inpe

Wind speed Ratio Climatic Meters per second Inpe

Biome Nominal Terrain Not applicable MapBiomas

Type of land Nominal Terrain Not applicable MapBiomas

Right-of-way clearing Nominal Performance Not applicable GGT

Source: Authors

The data in Table 2 were classified according to the measurement scales postulated by Stevens (Stevens, 
1946). According to this classification, all measurement scales can be classified into nominal, ordinal, 
interval and ratio. Nominal and ratio data were used in the reported study. Nominal data corresponds to 
the independent dichotomous output variable. Ratio variables correspond to the continuous predictive 
variables. 

The data of Table 2 was also classified regarding the type of characteristic reported: performance, 
constructive and climatic. 

The performance characteristics are related to the operational dynamics of the transmission line. The 
forced outage data was obtained from the Integrated System of Disturbances (Sistema Integrado de 
Perturbações, SIPER) (Operador Nacional do Sistema Elétrico, 2016a). This variable represents whether 
or not forest fires caused a line trip.

The fire outbreak data were obtained from the Queimadas program (Instituto Nacional de Pesquisas 
Espaciais, 2017). The fire outbreak detection system for the polar orbit satellites can capture a fire front 
of about 30 m long by 1 m wide or larger. Therefore, the quantity of this variable represents the area 
affected by forest fire.

The Normalised Difference Vegetation Index (NDVI) index data and the right-of-way clearing data were 
obtained from the Geospatial Transmission Management System - GGT (Guido JR. et al., 2018). NDVI 
is calculated by the difference in reflectance between the near infrared and red bands, normalised by 
the sum of the near infrared and red bands. The index varies on a scale of -1 to +1. The closer to 1, the 
greater the vegetation cover density; negative values represent bodies of water (Rouse et al., 1973).

The constructive characteristics are those related to the design of the facilities. The width of the right-
of-way for the span, the height of the towers at the ends of the span and the number of insulators per 
chain were obtained from the data of the GGT system (Guido JR. et al., 2018). Although these variables 
have granularity by span, the available data reflect values by transmission line section. 
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The climatic data correspond to humidity, temperature, wind speed and number of days without rainfall 
for each span under analysis. All this information was obtained from the Brazilian Space Research 
Insititute (Instituto Nacional de Pesquisas Espaciais, Inpe). Data is available since 2000 at a resolution 
(pixel) of 25 km x 25 km. The data are derived from meteorological models of the Global Forecast 
System - GFS (Instituto Nacional de Pesquisas Espaciais, 2020; National Oceanic And Atmospheric 
Administration, 2020). 

It is important to highlight that the temperature information cited in this work refers to the weather 
conditions and not the flame’s temperature or the transmission line conductors. The nominal variables 
were analysed according to specific classifications, as shown in Table 3. 

Table 3 | Categories of biome, land use and right-of-way clearing variables 

Variables Dichotomous 
representation Category

Biome

0 Amazônia

0 Caatinga

1 Cerrado

Land use

0 Annual and Perennial Culture

0 Countryside Training

0 Forest Formation

1 Savanna Formation

0 Urban infrastructure

0 Agriculture and Grassland Mosaic

0 Other non-vegetated area

0 Pasture

0 River, Lake and Ocean

Right-of-way clearing

1 Authorised

0 Authorised with restrictions

0 Prohibited

Source: Authors
It should be stressed that the categories of the variables cited in Table 3 are not exhaustive and are 
limited to those listed in the database used. The dichotomous representation of the variables is 
necessary for the use in logistic regression models. The dichotomous representation criterion of Table 
3 followed the results of the previous descriptive statistical analyses (Costa, 2021; Costa et al., 2022). 

It was found that 71% of the span area that caused outages is related to the land use category ‘Savanna 
Formation’. As such, the value 1 was assigned to this variable for the dichotomous representation of 
the category ‘Savanna Formation’ and the value of 0 for the other categories. For the biome variable, 
the prevalence of span areas that caused outages is in the ‘Cerrado’ category (59%). Therefore, the 
dichotomous representation of the category ‘Cerrado’ gets value 1, and the other categories get value 
0. For the right-of-way clearing variable, the ‘Authorised’ category got a value of 1, and the others got 
a value of 0. 

Based on the data described in Table 2, it was possible to consolidate the data using the identifier 
code of the transmission line span as an identifying key. The SAS software (SAS, 2020) was used for this 
crosschecking. 
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The data were processed following the flow described in Figure 3. 

Figure 3 | Summary of the study’s methodology 
Source: Authors

After consolidation, the data were divided into two sets: those that caused TL outages when exposed 
to fire outbreaks and those that, under the same condition, did not cause outages. 

Subsequently, a frequency analysis was made of the spans associated or not with outages. The spans 
associated with outages (smaller set) were used as a reference for the sample size of the spans 
associated with the absence of outages (larger set). The two data sets were once again consolidated, 
ensuring symmetry between the number of spans with and without outages. This initial analysis was 
considered a base model without including any of the variables under study. 

The Wald value was calculated for the variables not included in the base model. The next step was the 
inclusion of the significant variable with the highest score in the base model. This model was stored 
with its R2 coefficient and hit percentages being calculated. 
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Next, new Wald values were calculated for the variables not included in the first simulation step. The 
significant variable with the highest score was again selected for inclusion in the previous model. A new 
simulation step was generated, with the R2 coefficient and hit percentages calculated. This process was 
repeated until no significant variables remained outside the model. 

At the end of n simulation steps, the model with the highest hit percentage for the occurrence of 
outages was selected. The residuals were also analysed to identify outliers with undue influence on the 
models. Standardised differences greater than ±2σ (standard deviations) were considered outliers. The 
outliers were removed from the database, and the logistic regression analysis was repeated, obtaining 
new probabilistic models. 

The SPSS software was used (IBM, 2020) to construct the logistic regression models. 

3 RESULTS AND DISCUSSIONS

The initial results of the logistic regression model, when only the constant of Equation (1) is included, 
indicate that the initial model without predictive variables has a hit probability of 94.8%, always 
predicting the non-occurrence of outages. However, this output does not have a valid significance. The 
number of observed fire outbreak events without transmission line outages is much higher than those 
with outages. As such, the model considers the most frequent event and associates it with the output 
value.

In order to prevent the difference in the number of observations from causing a bias in the frequencies 
of observations, the available data was subjected to prior preparation. Basically, the database contains 
370 records with outages and 6754 records without outages. For this second set, 370 records were 
randomly selected. 

Based on this consideration, the frequencies of cases with and without outages were forced to be equal. 
Consequently, the base probability of an outage occurring becomes 50%, and the complementary 
probability of an outage not occurring also becomes 50%. 

Therefore, the first estimate of the model, when only the constant is included, was reviewed and 
described in Table 4. 

Table 4 | Base Model

Observed

Predicted

Outages Correct  
percentage

0 1

Step 0
Outages

0 0 370 0.00

1 0 370 100.00

Overall Percentage   50.00

Source: Authors

In Table 4, records with outages are indicated by the number 1, and records without outages are 
indicated by the number 0. As expected, the model could predict 50% of the occurrences correctly, 
given that the outage frequencies were the same. In this first step, the constant value used was zero 
and the results were insignificant (p>0.05). 

The variables that were not considered in the model for Step 0 are presented in Table 5. The model’s 
general statistic (chi-square) was 156.83 and was considered significant (p<0.005). This means that 
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variables that are not in the model are significantly different from zero or, in other words, that adding 
one or more of these variables to the model will significantly affect its predictive power. 

Table 5 | Parameters of the variables outside the model in step 0 of the simulation

Variables Score Df Sig.

Fire outbreaks 64.061 1 0.00

NDVI 6.305 1 0.01

Right-of-way width 3.065 1 0.08

Height 18.662 1 0.00

Insulators 7.830 1 0.01

Days without rain 61.089 1 0.00

Humidity 65.913 1 0.00

Temperature 45.525 1 0.00

Wind speed 1.843 1 0.17

Biome(1) 49.174 1 0.00

Type of land(1) 28.831 1 0.00

Right-of-way clearing(1) 16.520 1 0.00

Overall Statistics 156.830 12 0.00

Source: Authors

The score data of Table 5 represent the Wald values. This is a previous indicator used by SPSS to indicate 
the order of inclusion of the variables in each simulation step. For the analysed data, the Wald value 
was not significant (p>0.05) for the variables corresponding to the right-of-way width and wind speed. 
The other variables were considered significant, with the highest score corresponding to the variable 
humidity. 

Table 5 also shows the dichotomous predictor variables: biome, land use and right-of-way clearing 
authorisation. Based on the results of a previous descriptive statistical analysis, we sought to investigate 
the Cerrado biome’s effect on the performance of transmission lines. As such, the value 1 was assigned 
to all spans located in Cerrado areas. The value 0 was assigned to the spans located in other biomes. 
The same procedure was repeated for the land use classified as Savanna Formation, which received 
the value 1, and the other uses, which received the value 0. In the case of the authorisation variable, 
the value 1 was assigned to all spans without right-of-way clearing restrictions and 0 for the spans with 
partial restrictions or prohibition. The three dichotomous variables under analysis were considered 
significant (p<0.05) for the model.

The simulation is done by including one variable at a time, following the order imposed by the Wald 
value presented in Table 5. For example, in Step 1, the simulation was made considering the variable 
Humidity and the constant.

At each step of the simulation, the same parameters of Table 5 are recalculated, with the variable 
with the highest Wald value being included in the model and the non-significant variables (p > 0.05) 
discarded. The statistical summary of the new simulated models is presented in Table 6.
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Table 6 | Statistics of the new model 

Step -2 log-likelihood R2 Cox & Snell R2 Nagelkerke

1 951.261a 0.096 0.128

2 896.682b 0.160 0.214

3 872.749b 0.187 0.249

4 855.190b 0.206 0.275

5 847.957b 0.214 0.285

6 848.302b 0.213 0.284

7 843.750b 0.218 0.291

a. The estimate was stopped in iteration number 4 because the parameter 
estimates changed by less than 0.001.

b. The estimate was stopped in iteration number 6 because the parameter 
estimates changed by less than 0.001.

Source: Authors

As the variables are included, Nagelkerke’s R2 increases so that at the end of the 7 steps, we get the 
value of 0.291 on a scale of 0 to 1. This result reveals that there are representative random factors that 
influence the probability of the occurrence of outages. 

The results of the hit percentage at each simulation step are shown in Table 7.

Table 7 | Models generated at every step

Observed

Predicted

Outages Correct 
percentage

0 1

Step 1

0 186 184 50.27

1 118 252 68.11

59.19

Step 2

0 257 113 69.46

1 130 240 64.86

67.16

Step 3

0 271 99 73.24

1 131 239 64.59

68.92

Step 4

0 271 99 73.24

1 111 259 70.00

71.62

Step 5

0 274 96 74.05

1 113 257 69.46

71.76

Step 6

0 279 91 75.41

1 113 257 69.46

72.43
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Observed

Predicted

Outages Correct 
percentage

0 1

Step 7

0 284 86 76.76

1 120 250 67.57

   72.16

Table 7 shows that after seven steps, the simulation reached a model that can correctly predict 72.16% 
of cases. The best average result occurred in the sixth step, with an accuracy of 72.43%. Remembering 
that the base case (Table 4) reached a 50% hit percentage, we can state that the generated models 
managed to increase the outage prediction accuracy by up to 44.86%. 

However, this work aims to predict the events that will generate transmission line outages with a 
greater hit probability. According to this objective, the model with the best result was obtained in Step 
4, with 70.00% of correct predictions. 

After presenting the model’s statistical indicators, the equation coefficients’ values are presented (1) to 
Step 4 of the simulation. These results are presented in Table 8. 

Table 8 | Coefficients of the generated models 

Step Variable B Standard 
Error Wald df Sig. Exp(B)

4

Fire outbreaks 0.04 0.01 29.69 1.00 0.00 1.04

Days without rain 0.01 0.00 19.46 1.00 0.00 1.01

Humidity -0.04 0.01 13.09 1.00 0.00 0.96

Biome(1) 0.79 0.19 17.12 1.00 0.00 2.21

Constant 0.01 0.37 0.00 1.00 0.97 1.01

In addition to the variable’s coefficient, Table 8 provides the standard error information associated 
with each calculated coefficient, the Wald value, the degree of freedom, the significance level and B 
exponent. 

Considering the model with the best fit to the objectives of this work, corresponding to step 4, we 
realised that it uses the continuous variables fire outbreaks, days without rain and humidity; the 
dichotomous variable biome; and the constant. That is, the climatic conditions, the terrain conditions, 
and the size of the wildfire are determinants for the occurrence of transmission line outages. 

Considering the B exponent, the variable with the greatest chance of increasing the hit probability 
of the model is the type of Biome (2.21). With this variable, the influence on the performance of 
transmission lines with spans located in the Cerrado biome was studied. The results indicate that this 
type of biome has a higher probability of causing transmission line outages because of wildfires. 

The absence of the transmission line’s constructive variables in all the generated models stands out. 
The explanation may be the quality of the available data, which considered average values declared 
by the transmission concessionaires for the entire transmission line studied, which proved inadequate 
granularity for the proposed study. 

Improving data quality depends on specific and ongoing regulatory action, which consists of building a 
technical database of transmission assets with a georeferenced basis and submetric accuracy (Agência 
Nacional de Energia Elétrica, 2019). It is reasonable to infer that a base with these characteristics will be 
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able to reduce the randomness of the models (higher Nagelkerke’s R2) and increase the hit probability 
of outage events caused by wildfires. 

Regulatory incentives for transmission utilities can also be evaluated against results since they get paid 
only when their system is available. Revenue is discounted in the case of outages, and the goal is to 
ensure maximum system availability (Agência Nacional de Energia Elétrica, 2016).

Brazilian regulations treat the wildfire phenomenon as an exception to the general rule. Outages caused 
by these phenomena can be exempt from revenue discounts. This exception reflects an understanding 
of the Brazilian regulator regarding the limitation of the transmission utility’s ability to take preventive 
actions against wildfires (Agência Nacional de Energia Elétrica, 2016).

The regulator’s perspective received validation from the model to some extent.  However, apart from 
the design phase, where the line’s layout determines the biomes it traverses, the transmission utilities 
cannot proactively mitigate outages. The model primarily revealed that climate factors, independent of 
the transmission utilities’ actions, influence outage occurrences. 

It is also interesting to note that the environmental restrictions arising from licensing did not prove 
relevant. In all simulation steps, the right-of-way width variable was statistically insignificant (p > 0.05) 
for the model. The authorisation variable, which represents the existence or not of restrictions to right-
of-way clearing along the span, only showed statistical significance (p<0.05) in the first step of the 
simulation. Still, as its Wald value was 5.96, it did not even enter the model corresponding to the 
simulated step. 

It is also worth noting that the variables temperature and land use were considered significant, 
although they only entered the model after Step 5. Since step 4 obtained the best hit probabilities, 
these variables did not appear in the final model. 

3.1 RESIDUAL ANALYSIS

A standardised residual analysis was performed. These values are the standardised differences between 
the observed data and the values that the model predicts. Differences greater than ±2σ (standard 
deviations) were considered discrepancies. Ten records considered atypical were found. These records 

represent 1.35% of the database and were excluded because they unduly influenced the model. 

3.2 NEW MODEL AFTER THE EXCLUSION OF THE RESIDUALS

The simulations were repeated, considering the remaining 730 records after excluding outliers. New 
models were obtained from 5 simulation steps. The statistics of the new models are described in Table 9.

Table 9 | Statistics of the new model 

Step --2 log-likelihood R2 Cox & Snell R2 Nagelkerke

1 883.116a 0.162 0.216

2 834.389a 0.216 0.288

3 802.387a 0.250 0.333

4 776.089a 0.276 0.368

5 770.014a 0.282 0.376

a. The estimate was stopped in iteration number 6 because the parameter 
estimates changed by less than 0.001. Source: Authors
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Table 9 shows that the exclusion of outliers raised the values of Nagelkerke’s R2. That is, the residuals 
were confusing the models. Considering the best cases before and after removing the residuals, we can 
state that it was possible to increase Nagelkerke’s R2 by 29,2% (0,291 to 0,976). 

Regarding the hit percentage, the new results at each simulation step are shown in Table 10.

Table 10 | Hit percentage of the new models generated at each step

Observed

Predicted

Outages Correct 
percentage

0 1

Step 1

0 296 67 81.5

1 190 177 48.2

64.8

Step 2

0 272 97 74.9

1 126 241 65.7

70.3

Step 3

0 271 92 74.7

1 140 227 61.9

68.2

Step 4

0 271 92 74.7

1 98 269 73.3

74.0

Step 5

0 276 87 76.0

1 102 265 72.2

74,1

Source: Authors

Table 10 shows that a model was reached after five steps of simulation that managed to hit 74.1% of 
the predictions. This means there was an improvement in the hit percentage of the order of 2.68% 
compared to simulations without removing residuals. For the base case (Table 4), we can say that the 
new models generated increased the outage prediction accuracy by up to 48.2%. 

However, just as in the previous simulation, the model that achieved the highest hit rate for the 
occurrence of outages (output value 1) corresponds to step 4. The accuracy observed in this case was 
73.3%, an improvement of 4.71% regarding the equivalent model with the presence of residuals. 

The values of the coefficients of the equation (1) to step 4 of the simulation are presented below. These 
results are presented in Table 11.
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Table 11 | Coefficients of the newly generated models 

Step Variables B Standard 
Error Wald df Sig. Exp(B)

4

Fire outbreaks 0.08 0.01 47.84 1.00 0.00 1.08

Days without rain 0.01 0.00 22.82 1.00 0.00 1.01

Temperature 0.25 0.05 26.66 1.00 0.00 1.29

Biome(1) 1.02 0.20 25.31 1.00 0.00 2.78

Constant -10.46 1.75 35.79 1.00 0.00 0.00

Source: Authors

An important difference observed in the new simulations was removing the humidity variable in Step 
4 and replacing it with the temperature variable. After the exclusion of outliers, the humidity variable 
presented non-significant values (p>0.05), which meant it was excluded from the simulations. The 
increase of the B exponent values for all variables can also be highlighted. In the case of the Biome 
variable, the value of the B exponent was 2.78, reinforcing the importance of this information for the 
model.

The model resulting from the reported simulation and corresponding to step 4 can be obtained by 
replacing the coefficients of Equation (1):

(6)

The result of Equation (6) represents the probability of an outage occurring because of a wildfire. 
Numbers 1 to 4 represent the predictive variables corresponding to fire outbreaks, days without rain, 
temperature, and biome, respectively. The climatic variables of the obtained model coincide with the 
results of the probabilistic model of (Shi et al., 2018), which studied the influence of forest fires on 
transmission lines in Hubei Province, China. 

Considering Equation (6), it is possible to simulate some scenarios to understand how the performance 
of the studied transmission lines will be affected. In the first case, we evaluated the variation in the 
probability of outages due to wildfires in the Cerrado biome and other biomes (Caatinga and Amazon). 
For this scenario, the variables fire outbreaks (19.2) and days without rain (47.98) are kept constant, 
and the temperature is varied. Figure 4 shows the results.



Costa et al.

155 Sustainability in Debate - Brasília, v. 14, n.3, p. 140-159, dez/2023ISSN-e 2179-9067

Figure 4 | Probability of outages versus temperature for the Cerrado and other biome scenarios.
Source: Authors.

The simulation demonstrates that the probability of transmission line outages in the Cerrado biome 
is consistently higher than in other biomes for a temperature range between 30oC and 42oC. It is 
important to highlight that the indicated temperatures refer to the climate and not the flame’s 
temperature or the transmission lines’ conductors.

For the temperature of 36oC, with the simulated parameters, the risk of outages in the Cerrado biome 
is 82.9% against 63.5% in other biomes. The probability of power outages on transmission lines is 30% 
higher in the Cerrado than in other biomes. 

With the temperature of 36oC as a reference, Figure 4 shows that 1oC increases the outage probability 
by 4% in the Cerrado biome and 10% in the other biomes. Even if the UN global warming target below 
1.5oC is maintained (Silva et al., 2019), relevant impacts on the performance of the studied transmission 
lines will be observed. 

In a second simulation, we evaluated the variation in the probability of line outages as a function of 
the number of fire outbreaks. For this scenario, the considered biome (Cerrado) and the days without 
rain (47.98) were kept constant. The temperature variable was again varied. Figure 4 Figure 5 shows 
the results.
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Figure 5 | Probability of outages versus temperature for the different fire outbreak scenarios 
Source: Authors

Based on the simulation shown in Figure 5, we can conclude that the number of fire outbreaks, that 
is, the affected area, greatly influences the probability of transmission line outages. Considering the 
temperature of 36oC, the probability of outages is 46% higher for the situation with 15 detected 
outbreaks against 1 outbreak. At the same temperature, for a detection situation of 50 fire outbreaks, 
the probability of transmission line outages reaches 98.3%. 

The last simulation presented in this work evaluates the probability of transmission line outages as a 
function of the number of days without rain. For this scenario, the biome considered was the Cerrado 
and the number of fire outbreaks (19,2) was kept constant. Figure 6 shows the results.

Figure 6 | Probability of outages versus temperature for the different scenarios of days without rain. 
Source: Authors

The scenarios presented demonstrate that the influence of days without rain is greater in milder 
temperatures. With the temperature of 36oC as a reference, the variation in the probability of outages 
is 8.2% between 10 and 50 days without rain and 7.1% between 50 and 100 days without rain. At 
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a temperature of 40oC, the probability difference of outages between the 10 and 100-day rain-free 
scenarios is only 6.3%. 

The models found can be applied to improve the accuracy of business plans for new transmission 
lines, as a tool for choosing layouts for new transmission lines, and to improve the transmission line 
maintenance process.

4 CONCLUSION

It was possible to build a logistic regression model that calculates the outage probability of a 
transmission line from the characteristics of the spans exposed to the fire outbreaks. The built model 
revealed the importance of environmental and terrain characteristics for outages caused by wildfires. 
The constructive characteristics of the lines and the NDVI index proved inefficient for the proposed 
application. Simulations also demonstrated the impact of the analysed variables on the probability 
of transmission line outages. Higher temperatures will invariably cause increased outages of these 
facilities, with the greatest impacts observed in the biomes Caatinga and Amazon.

The methodology applied in this study can be replicated in other countries sensitive to the phenomenon 
of wildfires. In this way, the work can contribute significantly to the construction of resilient 
infrastructures at a global level.

The results of this study can be considered by regulators and planners in the electricity sector in new 
transmission line projects, reducing the likelihood of shutdowns caused by wildfires. This can be done 
by seeking to combine the technical needs of the projects with the most favourable climatic and terrain 
characteristics to ensure the operation of these facilities is not interrupted.

These measures can potentially increase the resilience of these installations, contributing to the 
fulfilment of SDG 7 in terms of increasing the reliability of electricity supply. Furthermore, there will 
be a positive economic impact for energy transmission concessionaires, which will avoid discounts on 
their revenues due to forced shutdowns.
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