LEARNING EFFECTS IN CONCEPT ASSOCIATION: A STUDY WITH MULTIDIMENSIONAL SCALING

Authors

  • Hyago Ribeiro Torres Felix Universidade Federal Rural do Semiárido , Departamento de Ciências Naturais, Estatística e Matemática
  • Jusciane da Costa e Silva Universidade Federal Rural do Semiárido , Departamento de Ciências Naturais, Estatística e Matemática
  • Gustavo de Oliveira Gurgel Rebouças Universidade Federal Rural do Semiárido , Departamento de Ciências Naturais, Estatística e Matemática
  • Carlos Alberto dos Santos Universidade Federal Rural do SemiáridoCentro de Ciências Exatas e Naturais
  • Geovani Ferreira Barbosa UFERSA - DEPARTAMENTO DE CIÊNCIAS NATURAIS, MATEMÁTICA E ESTATÍSTICA

DOI:

https://doi.org/10.26512/rpf.v8i1.52562

Keywords:

word association tests. TANC. multidimensional scaling. acoustics. Arduino.

Abstract

This work presents a study to investigate learning effects in the association of scientific concepts. In the experiment, high school students worked with previous organizers, as proposed by Ausubel, and with an Arduino board to play songs they programmed. Numerical Association of Concepts Tests (TANC), applied before and after the unconventional didactic intervention, were analyzed with the multidimensional scaling program ALSCAL, available in the SPSS statistics package. The results strongly suggest that TANC is sensitive to changes in students' cognitive structure, and that ALSCAL is capable of extracting structural information from tests.

Downloads

Download data is not yet available.

References

AUSUBEL, D. P. A Subsumption Theory of Meaningful Verbal Learning and Retention. The Journal of General Psychology, v. 66, n. 2, p. 213–224, 1962.

AUSUBEL, D. P. The acquisition and retention of knowledge: A cognitive view. Dordrech: Kluwer, 2000.

AUSUBEL, D. P. The Use of Ideational Organizers in Science Teaching. Columbus: [s.n.], 1970. Disponível em: https://files.eric.ed.gov/fulltext/ED050930.pdf.

AUSUBEL, D. P.; FITZGERALD, D. Chapter V: Meaningful Learning and Retention: Intrapersonal Cognitive Variables. Review of Educational Research, v. 31, n. 5, p. 500–510, 1961. .

AUSUBEL, David P. The use of advance organizers in the learning and retention of meaningful verbal material. Journal of Educational Psychology, v. 51, n. 5, p. 267–272, 1960. DOI: 10.1037/h0046669. .

BRICKER, P. D.; PRUZANSKY, S. Comparison of Sorting and Pairwise Similarity Judgment Techniques for Scaling Auditory Stimuli. . Murray Hill: [s.n.], 1970.

BROWN, R.; BERKO, J. Word Association and the Acquisition of Grammar. Child Development, v. 31, n. 1, p. 1–14, 1960.

BRUNER, J. S. Individual and collective problems in the study of thinking. Annals of the New York Academy of Sciences, v. 91, n. 1, p. 22–37, 1960.

BRUNER, J. S. Notes on the cognitive revolution. Interchange, v. 15, p. 1–8, 1984.

CARROLL, J. D.; CHANG, J.-J. Analysis of individual differences in 25 multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika, v. 35, n. 3, p. 283–319, 1970.

CHYUNG, S. Y. et al. Evidence-based survey design: The use of a midpoint on the Likert scale. Performance Improvement, v. 56, n. 10, p. 15–23, 2017.

COXON, A. P. M. The user’s guide to multidimensional scaling. Exeter: Heinemann Educational Books, 1982.

DEESE, J. Influence of inter-item associative strength upon immediate free recall. Psychological Reports, v. 5, p. 305–312, 1959.

DOS SANTOS, C.A.; MOREIRA, M. A. Análise multidimensional da associação numérica de conceitos em termodinâmica. Ciência e Cultura, v. 32, n. 8, p. 1065–1069, 1980.

DOS SANTOS, C.A. Aplicação da análise multidimensional e da análise de agrupamentos hierárquicos ao mapeamento cognitivo de conceitos físicos. 1978. 264 f. UFRGS, 1978.

DOS SANTOS, C.A.; MOREIRA, M. A. Aplicação da Análise Multidimensional ao Mapeamento Cognitivo de Conceitos Físicos. Revista Brasileira de Física, v. 9, p. 849–858, 1979a.

DOS SANTOS, C.A.; MOREIRA, M. A. Escalonamento multidimensional e análise de agrupamentos hierárquicos. Porto Alegre: Editora da UFRGS, 1991.

DOS SANTOS, C.A.; MOREIRA, M. A. Instrumentos de Medida para o Mapeamento Coginitivo de Conceitos Físicos. Revista Brasileira de Física, v. 9, p. 835–848, 1979b.

DUNN-RANKIN, P. et al. Scaling methods. Mahwah: Lawrence Eribaum Associates, 2004. 26

GARSKOF, B. E.; HOUSTON, J. P. Measurement of verbal relatedness: an idiographic approach. Psychological Review, v. 70, n. 3, p. 277–288, 1963.

GEESLIN, W. E.; SHAVELSON, R. J. An Exploratoric analysis of the representation of a mathematical structure in students’ cognitive structures. American Educational Research Journal, v. 12, n. 1, p. 21–39, 1975.

GIGUÈRE, G. Collecting and analyzing data in multidimensional scaling experiments: A guide for psychologists using SPSS. Tutorials in Quantitative Methods for Psychology, v. 2, n. 1, p. 26–37, 2006.

GLINER, G. S. A Note on a Statistical Paradigm for the Evaluation of Cognitive

Structure in Physics Instruction. Applied Psychological Measurement, v. 5, n. 4, p. 493–502, 1981.

GRECA, I. M.; MOREIRA, M. A. O uso da análise multidimensional na pesquisa em ensino de ciências. Revista Brasileira de Pesquisa em Educação em Ciências, v. 1, n. 3, p. 1–12, 2011.

GUTTMAN, L. A general nonmetric technique for finding the smallest coordinate space for a configuration of points. Psychometrika, v. 3, n. 4, p. 469–506, 1968.

HAMMER, D. Misconceptions or P-Prims: How May Alternative Perspectives of Cognitive Structure Influence Instructional Perceptions and Intentions. Journal of the Learning Sciences, v. 5, n. 2, p. 97–127, 1996.

HILGER, T. R.; MOREIRA, M. A. A study of social representations of quantum physics held by high school students through numerical and written word association tests. Revista Electrónica de Investigación en Educación en Ciencias, v. 8, n. 1, p. 52–61, 2013.

HOUT, M. C.; PAPESH, M. H.; GOLDINGER, S. D. Multidimensional scaling. Wiley Interdiscip Rev Cogn Sci., v. 4, n. 1, p. 93–103, 2013.

JOHNSON, P. E. Associative meaning of concepts in physics. Journal of Educational Psychology, v. 55, n. 2, p. 84–88, 1964.

JOHNSON, P. E. Some psychological aspects of subject matter structure. Journal of Educational Psychology, v. 68, n. 2, p. 76–88, 1967.

KRUSKAL, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. psychometrika, v. 9, n. 1, p. 1–27, 1964.

MCGEHEE, W. The Free Word Association of Elementary School Children. The Pedagogical Seminary and Journal of Genetic Psychology, v. 50, n. 2, p. 441–455, 1937.

MOORE, H. T.; GILLILAND, A. R. The measurement of aggressiveness. The Journal of Applied Psychology, v. V, n. 2, p. 97–118, 1921.

MOREIRA, M. A. A Teoria de Aprendizagem de David Ausubel como Sistema de Referência para a Organizaçilo de Conteúdo de Física. Revista Brasileira de Física, v. 9, n. 1, p. 275–292, 1979. .

MOREIRA, M. A. Aprendizagem Significativa Crítica. Porto Alegre: [s.n.], 2010. Disponível em: https://www.if.ufrgs.br/~moreira/apsigcritport.pdf.

MOREIRA, M. A. Grandes desafios para o ensino da física na educação contemporânea. Revista do Professor de Física, v. 1, n. 1, p. 1–13, 2017.

MOREIRA, M. A. A Teoria de Aprendizagem de David Ausubel como Sistema de Referência para a Organização de Conteúdo de Física. Revista Brasileira de Física, v. 9, n. 1, p. 275–292, 1979. .

MOREIRA, M. A. Aprendizagem significativa crítica. III Encontro Internacional sobre Aprendizagem Significativa, 2010. DOI: 10.1590/S0103-863X1999000200007.

MOREIRA, M. A.; DOS SANTOS, C. A. The Influence Of Content Organization On Student’S Cognitive Structurein Thermodynamics. Journal of Research in Science Teaching, v. 18, p. 525–531, 1981.

NASCIMENTO, M. M. et al. Métodos Quantitativos Interpretativos na Educação em Ciências: Abordagens para Análise Multivariada de Dados. Revista Brasileira de Pesquisa em Educação em Ciências, v. 19, p. 775–800, 2019. .

PIETROCOLA, M. et al. Física em contextos, 2: ensino médio. Sã0 Paulo: Editora do Brasil, 2016.

PRESTON, C. C.; COLMAN, A. M. Optimal number of response categories in rating scales: reliability, validity, discriminating power, and respondent preferences. Acta Psychologica, v. 104, p. 1–15, 2000.

SHAVELSON, R. J. Learning from physics instruction. Journal of Research in Science Teaching, v. 10, n. 2, p. 101–111, 1973.

SHAVELSON, R. J. Methods for examining representations of a subject-matter structure in a student’s memory. Journal of Research in Science Teaching, v. 11, n. 3, p. 231–249, 1974a.

SHAVELSON, R. J. Some aspects of the correspondence between content structure and cognitive structure in physics instruction. Journal of Educational Psychologygy, v. 63, n. 3, p. 225–234, 1972.

SHAVELSON, R. J. Some methods for examining content structure and cognitive structure in instruction. Educational Psychologist, v. 11, n. 2, p. 110–122, 1974b.

SHEPARD, R. N. The analysis of proximities: multidimensional scaling with an unknown distance function. I. Psychometrika, v. 27, n. 2, p. 125–140, 1962a.

SHEPARD, R. N. The analysis of proximities: multidimensional scaling with an unknown distance function. II. Psychometrika, v. 27, n. 3, p. 219–246, 1962b.

SMITH, W. W. Experiments on the association test as a criterion of individuality. In: SMITH, W. W. (Org.). The measurement of emotion. San Diego: Harcourt Brace & Company, 1922. p. 109–123.

SUBKOVIAK, M. J. The Use of Multidimensional Scaling in Educational Research. Review of Educational Research, v. 45, n. 3, p. 387–423, 1975.

SUBKOVIAK, M. J.; ROECKS, A. L. A Closer Look at the ccuracy of Alternative Multidimensional Scaling Data Collection Methods. . [S.l: s.n.], 1976. Disponível em: https://files.eric.ed.gov/fulltext/ED124565.pdf.

TAKANE, Y.; YOUNG, F. W.; J. DE LEEUW. Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika, v. 42, n. 1, p. 7–67, 1977.

THRO, M. P. Relationships Between Associative and Content Structure of Physics Concepts. Journal of Educational Psychology, v. 70, n. 6, p. 971–978,1978.

TORGERSON, W. S. MULTIDIMENSIONAL SCALING: I. THEORY AND METHOD. psychometrika, v. 17, n. 4, p. 401–419, 1952.

TSAI, C.-C.; HUANG, C.-M. Exploring students’ cognitive structures in learning science: a review of relevant methods. Journal of Biological Education, v. 36, n. 4, p. 163–169, 2002.

YOUNG, F. W. Multidimensional scaling: history, theory, and applications. Hillsdale: Lawrence Eribaum Associates, 1987.

YOUNG, F. W.; TAKANE, Y.; LEWYCKYJ, R. ALSCAL: A nonmetric multidimensional scaling program with several individual-differences options. Behavior Research Methods & Instrumentation, v. 10, n. 3, p. 451–453, 1978.

Published

2024-04-10

How to Cite

RIBEIRO TORRES FELIX, Hyago; DA COSTA E SILVA, Jusciane; DE OLIVEIRA GURGEL REBOUÇAS, Gustavo; DOS SANTOS, Carlos Alberto; FERREIRA BARBOSA, Geovani. LEARNING EFFECTS IN CONCEPT ASSOCIATION: A STUDY WITH MULTIDIMENSIONAL SCALING. Journal of the Physics Teacher, [S. l.], v. 8, n. 1, p. 269–290, 2024. DOI: 10.26512/rpf.v8i1.52562. Disponível em: https://www.periodicos.unb.br/index.php/rpf/article/view/52562. Acesso em: 19 may. 2024.